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For integers 0 ≤ k ≤ n the corresponding binomial coefficient is(
n

k

)
=

n!

k!(n − k)!
.

It is not obvious from this definition that this is an integer. It
becomes obvious if we give a combinatorial interpretation to

(n
k

)
.

Interpretation 1.
(n
k

)
= # of k-element subsets of {1, . . . , n}.

Interpretation 2. Consider paths p in the integer lattice Z2 using
unit steps E (add the vector (1, 0)) and N (add the vector (0, 1)).

p =

E N

E E N

The number of paths p from (0, 0) to (m, n) is
(m+n

m

)
because p

has m + n total steps of which m must be E (and then the rest N).



Let s and t be variables. The corresponding Lucas sequence is
defined inductively by {0} = 0, {1} = 1, and

{n} = s{n − 1}+ t{n − 2}

for n ≥ 2. For example,

{2} = s, {3} = s2 + t, {4} = s3 + 2st.

We have the following specializations.
(1) s = t = 1 implies {n} = Fn, the Fibonacci numbers.
(2) s = 2, t = −1 implies {n} = n.
(3) s = 1 + q, t = −q implies {n} = 1 + q + · · ·+ qn−1 = [n]q.
So when proving theorems about the Lucas sequence, one gets
results about the Fibonacci numbers, the nonnegative integers, and
q-analogues for free.



The Lucas analogue of
∏

i ni/
∏

j kj is
∏

i{ni}/
∏

j{kj}. When is
the Lucas analogue a polynomial in s, t? If so, is there a
combinatorial interpretation? Given a row of n squares, let T (n)
be the set of all tilings of the row with dominoes and monominoes.

T (3) :

The weight of a tiling T is

wtT = snumber of monominoes in T tnumber of dominoes in T .

Similarly, given any set of tilings T we define its weight to be

wt T =
∑
T∈T

wtT .

To illustrate wt(T (3)) = s3 + 2st = {4}.
Theorem
For all n ≥ 1 we have {n} = wt(T (n − 1)).

Previous work on the Lucas analogue of the binomial coefficients
was done by Gessel-Viennot, Benjamin-Plott, Savage-Sagan.



Given 0 ≤ k ≤ n the corresponding Lucasnomial is{
n

k

}
=

{n}!
{k}!{n − k}!

where {n}! = {1}{2} . . . {n}. This is a polynomial in s, t. Consider
the staircase δn in the first quadrant of R2 consisting of a row of
n − 1 unit squares on the bottom, then n − 2 one row above, etc.
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δ6:
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a tiling:

The set of tilings of δn is T (δn) consisting of all tilings of the rows
of δn. Using the combinatorial interpretation of {n} we see

wt T (δn) = {n}!



Theorem For 0 ≤ k ≤ n we have
{n
k

}
is a polynomial in s, t.

Proof sketch. It suffices to construct a partition of T (δn) such that
{k}!{n − k}! divides wtB for all blocks B of the partition. Given
T ∈ T (δn) we will find the B containing T as follows. Construct a
lattice path p in T going from (k , 0) to (0, n) and using unit steps
N (north) and W (west) by: move N if possible without crossing a
domino or leaving δn; otherwise move W . If n = 6 and k = 3, and

(3, 0)

(0, 6)

T =

(3, 0)

(0, 6)

P =

An N step just after a W is an NL step; otherwise it is an NI step.
B is all tilings with path p and agreeing with T to the right of
each NL step and to the left of each NI step. This gives a partial
tiling , P. The variable parts of P contribute {k}!{n − k}!.



Proposition

{
n

k

}
= {k + 1}

{
n − 1

k

}
+ t{n − k − 1}

{
n − 1

k − 1

}
.

Proof. From the previous proof we have{
n

k

}
=
∑
P

wtP

where the sum is over the fixed tiles in all partial tilings P of δn
whose path begins at (k , 0). If the path p of P begins with an N
step then the tiling to its left contributes {k + 1} and the rest of p
contributes

{n−1
k

}
. If p begins with WN then the tiling to its right

contributes t{n − k − 1} and the rest of p contributes
{n−1
k−1
}

.

(3, 0)

(0, 6)

P1 =

(3, 0)

(0, 6)

P2 =



For n ≥ 0, the Catalan numbers are

Cn =
1

n + 1

(
2n

n

)
.

For example
n 0 1 2 3 4 5

Cn 1 1 2 5 14 42

Stanley has collected more than 200 combinatorial interpretations
of Cn. One well-known interpretation is as follows.

Proposition

Cn is the nunber of lattice paths from (0, 0) to (n, n) using steps E
and N and staying weakly above the line y = x .



For n ≥ 0 define the corresponding Lucas-Catalan to be

C{n} =
1

{n + 1}

{
2n

n

}
.

Theorem For n ≥ 0 we have C{n} is a polynomial in s, t.
Proof sketch. It suffices to construct a partition of T (δ2n) such
that {n}!{n + 1}! divides wtB for all blocks B. Given T ∈ T (δ2n)
we find the other tilings in B exactly as for

{ 2n
n−1
}

except that in
the bottom row one lets both sides of the N step vary, always
keeping the blocking domino if it is an NL step.
Here are partial tilings corresponding to blocks for C{3}, on the left
for an NI step in the bottom row and on the right for an NL step.

(2, 0)

(0, 6)

P1 =

(2, 0)

(0, 6)

P2 =



The finite Coxeter groups W are those generated by reflections.
Each irreducible W has degree set D = {d1, . . . , dn}. The Coxeter
number of W is h = maxD. The Coxeter-Catalan number of W is

CatW =
n∏

i=1

h + di
di

.

∴ CatAn =
(n + 3)(n + 4) . . . (2n + 2)

(2)(3) . . . (n + 1)
=

(2n + 2)!

(n + 1)!(n + 2)!
= Cn+1.

W d1, . . . , dn h

An 2, 3, 4, . . . , n + 1 n + 1
Bn 2, 4, 6, . . . , 2n 2n
Dn 2, 4, 6, . . . , 2(n − 1), n 2(n − 1) (for n ≥ 3)
E6 2, 5, 6, 8, 9, 12 12
E7 2, 6, 8, 10, 12, 14, 18 18
E8 2, 8, 12, 14, 18, 20, 24, 30 30
F4 2, 6, 8, 12 12
H3 2, 6, 10 10
H4 2, 12, 20, 30 30

I2(m) 2,m m (for m ≥ 2)



Define the Lucas-Coxeter analogue

Cat{W } =
n∏

i=1

{h + di}
{di}

.

Theorem
For all finite, irreducible W we have Cat{W } is a polynomial in
s, t.

For W = Bn we have

Cat{W } =
{2n + 2}{2n + 4} . . . {4n}

{2}{4} . . . {2n}
.

For 0 ≤ k ≤ n and d ≥ 1 define the d-divisible Lucasnomial{
n : d

k : d

}
=

{n : d}!
{k : d}!{n − k : d}!

where {n : d}! = {d}{2d} . . . {nd}.
Theorem

For all n, k , d we have

{
n : d

k : d

}
is a polynomial in s, t.



1. Coefficients. Our proofs show our Lucas analogues are
polynomials in s, t with coefficients in N, the nonegative integers.
2. Fuss-Catalan numbers. The Fuss-Catalan numbers are, for
n ≥ 0 and k ≥ 1,

Cn,k =
1

kn + 1

(
(k + 1)n

n

)
.

Clearly Cn,1 = Cn. Consider the Lucas analogue

C{n,k} =
1

{kn + 1}

{
(k + 1)n

n

}
.

Theorem
For all n, k we have C{n,k} is a polynomial in s, t.

We can prove combinatorially that Fuss-Catalan Lucas analogues
for the other infinite families of irreducible Coxeter goups are
polynomials in N[s, t]. Stanley-S have proved this algebraically for
the exceptional Coxeter groups.



3. Rational Catalan numbers. Let a, b ≥ 1 be relatively prime
integers. The corresponding rational Catalan number is

Cat(a, b) =
1

a + b

(
a + b

a

)
If a = n and b = n + 1 then

Cat(a, b) =
1

2n + 1

(
2n + 1

n

)
= Cn.

Theorem (Grossman (1950))

The number of lattice paths from (0, 0) to (a, b) using steps E and
N and staying weakly above the line y = (b/a)x is Cat(a, b).

Algebraically Bergeron et al. proved Cat{a, b} is a polynomial.
Stanley-S. have shown algebraically it has coefficients in N.

4. Narayana numbers. The Narayana numbers are

Nn,k =
1

n

(
n

k

)(
n

k − 1

)
.

Note Cn =
∑n

k=1Nn,k . Stanley-S have shown algebraically that
N{n,k} is a polynomial with coefficients in N.
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